
Neuroanatomical Study of the A11 Diencephalospinal
Pathway in the Non-Human Primate
Quentin Barraud1, Ibrahim Obeid2, Incarnation Aubert1, Gregory Barrière1, Hugues Contamin3, Steve

McGuire4, Paula Ravenscroft4, Gregory Porras1, François Tison1,2, Erwan Bezard1, Imad Ghorayeb1,2*
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Abstract

Background: The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord
level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and
migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore
characterized the anatomy of this pathway in the NHP.

Methods and Findings: In situ hybridization of spinal dopamine receptors showed that D1 receptor mRNA is absent while
D2 and D5 receptor mRNAs are mainly expressed in the dorsal horn and D3 receptor mRNA in both the dorsal and ventral
horns. Unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the cervical spinal enlargement labeled A11
hypothalamic neurons quasi-exclusively among dopamine areas. Detailed immunohistochemical analysis suggested that
these FG-labeled A11 neurons are tyrosine hydroxylase-positive but dopa-decarboxylase and dopamine transporter-
negative, suggestive of a L-DOPAergic nucleus. Stereological cell count of A11 neurons revealed that this group is
composed by 40026501 neurons per side. A 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication with
subsequent development of a parkinsonian syndrome produced a 50% neuronal cell loss in the A11 group.

Conclusion: The diencephalic A11 area could be the major source of L-DOPA in the NHP spinal cord, where it may play a
role in the modulation of sensorimotor integration through D2 and D3 receptors either directly or indirectly via dopamine
formation in spinal dopa-decarboxylase-positives cells.
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Introduction

A number of pathological conditions are related to dysregula-

tion of dopaminergic transmission such as schizophrenia and the

mesocortical system, addiction and the mesolimbic system, and

Parkinson’s disease (PD) and the nigrostriatal system [1,2,3].

Contrasting with the forebrain, the dopaminergic innervation of

the spinal cord from A11 remains largely under-investigated

[4,5,6] although its functional implications in the spinal cord

autonomic and sensory-motor processes are of particular relevance

for pain control [7], cataplexy [8], locomotor network modulation

[9] and painful human conditions such as restless legs syndrome

(RLS) [10] and migraine [11]). For example, spinal dopamine

(DA) contributes to spinal reflex excitability where it depresses

monosynaptic ‘‘stretch’’ reflexes via D2 and D3 receptors [12,13].

In rodents, it has been suggested that DA release may reduce the

behavioral responses to noxious stimulation [7,14] and may

significantly inhibit the nociceptive processes in the trigeminocer-

vical complex [11]. DA turnover in the spinal dorsal horn

increases in response to noxious stimuli [15,16,17]. Spinal release

of DA has also been shown to activate spinal motor networks

involved in locomotion [9,18,19,20]. Altogether, this experimental

evidence underscores the role of dopaminergic spinal innervation

in the modulation of the sensory and motor processes. It is

therefore conceivable that damaged dopaminergic spinal trans-

mission may contribute to RLS symptoms [10], a condition being

improved by dopamine replacement therapy [21,22].

As neurological disorders such as PD are best modeled in non-

human primate (NHP) [23], better knowledge of the anatomo-

functional organization of the diencephalospinal pathway in the

NHP is critical. Therefore, we studied in the normal macaque

monkey (i) the regional distribution of DA spinal receptors

subtypes using in situ hybridization (ISH), (ii) the origin of the

dopamine source using a retrograde labeling technique and (iii) the

distribution and phenotype of these diencephalic A11 neurons

using immunohistochemistry. Finally, the consequences of a 1-

methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced

PD syndrome upon the diencephalospinal pathway were studied.
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Materials and Methods

Animals
Eighteen adult female rhesus monkeys (Macaca mulatta,

Cynbiose, Marcy l’Etoile, France) weighing 5 to 9 kg were used

for this study. In summary, 13 healthy animals were used: 4

monkeys for ISH and binding procedures, 2 for retrograde tracing

study, 4 for stereology and immunohistochemical procedures and

3 for HPLC dosages. In addition, 5 MPTP-treated animals were

used: 2 for stereology and immunohistochemical procedures and 3

for HPLC dosages. Experiments were carried out in accordance

with European Communities Council Directive of 24 November

1986 (86/609/EEC) for care of laboratory animals in facility

accredited by the ‘‘Direction des Services Veterinaires’’ of Rhone

area (Department Nu69; France). The study design describing the

animal use was specifically approved by the VetAgroSup school

(Marcy L’Etoile, France) IACUC. Veterinarians skilled in the

healthcare and maintenance of non-human primates supervised

animal care. All efforts were made to minimise animal suffering.

The use of primates was minimised by using an experimental

design that permits statistically-significant changes to be demon-

strated with the smallest number of animals per group and the

smallest number of groups, consistent with scientific rigour. All

steps were taken to ameliorate the welfare and to avoid the

suffering of the animals in accordance with the ‘‘Weatherall report

for the use of non-human primates’’ recommendations. Animals

were housed in adjoining individual primate cages (pen area

.2 m2) allowing social interactions, under controlled conditions of

humidity (50%620% relative humidity), temperature (24uC62uC)

and light (12-hour light/12-hour dark cycles, time lights on 8:00

a.m.). Food and water were available ad libitum. Experiments were

conducted according to previously published procedures and

methods [24,25].

The animals were euthanized with a sodium pentobarbital

overdose (150 mg/kg, i.v.). For the immunohistochemistry

procedures, the animals were perfused through the ascending

aorta with 2 l of 0.9% saline followed by 3 l of 4% paraformal-

dehyde in a phosphate buffer (pH 7.4) as fixative. Brains and

spinal cords were removed, sliced into frontal sections and placed

for 24 h at 4uC in the same fixative. Tissue slices were then rinsed

for 48 h at 4uC in 20% sucrose in Tris buffered saline (pH 7.4),

frozen in 245uC isopentane and cut into 50 mm frontal sections

with a cryostat (Leica). For the ISH and biochemical procedures,

brains and spinal cords were freshly frozen in 245uC isopentane

and stored at 280uC until use.

In situ hybridization
The in situ hybridization (ISH) procedure was performed as

previously described [24,26] with probes designed to recognize the

human D1 DA receptor subtype (2300 pb EcoR1-XbaI fragment;

gift from O. Civelli; [27]), the human D2 DA receptor subtype

(2300 pb SST1-Hind III fragment; gift from M. Caron; [28]), the

human D3 DA receptor subtype (400 pb BamH1 fragment; gift

from J.C. Schwartz; [29]), the human D5 DA receptor subtype

(1652 pb KpnI-Hind III fragment; gift from M. Caron; [30]) and

the human dopamine transporter (DAT) (1200 pb EcoRI

fragment; gift from B. Giros; [31]). Radiolabeled antisense and

sense 0.25 Kb cRNA probes were prepared by in vitro

transcription from the linearized plasmid (0.5 ml, 50 ng) using

[35S] (Perkin-Elmer; .1,000Ci/mmol) and appropriate RNA

polymerase (T7, T3 or SP6; Gibco BRL). Cryostat-cut serial

lumbar sections and brain frontal sections (12 mm) were thaw-

mounted on gelatin-coated slides. After alkaline hydrolysis to

obtain 0.25 kb complementary RNA fragments, the probes were

purified on G50-Sephadex and precipitated in sodium acetate (0.1

vol)–absolute ethanol (2.5 vol). Sections were hybridized for 1

night as previously described [24,26] and then exposed in contact

with Biomax film (Kodak) for 10–30 days, dipped into Ilford K5

emulsion, and developed after 8–12 weeks of exposure. The

sections were counterstained with hemalun and mounted in Eukitt.

Neurons and glial cells were also detected with a toluidine blue

counterstain on an adjacent lumbar spinal cord section (L4) in

order to provide a baseline appreciation of the neuronal/glial

distribution from which the ISH data could be interpreted.

Dopamine transporter binding
[125I] (E)-N-(3-iodoprop-2-enyl)-2b-carboxymethyl-3b-(49-methyl-

phenyl)-nortropane (PE2I) binding (specific activity: 2000 Ci/mmol)

was performed as previously described on cryostat-cut serial lumbar

and brain sections (12 mm) [32]. The latter were then incubated for

90 min at 25uC with 100 pM [125I] PE2I in pH 7.4 phosphate buffer

(in mM: NaH2PO4 10.14, NaCl 137, KCl 2.7, and KH2PO4 1.76).

Adjacent sections were incubated in the presence of 100 mM cocaine

(Sigma-Aldrich, St. Louis, MO, USA) to define nonspecific binding.

After incubation, sections were washed twice for 20 min in phosphate

buffer at 4uC and then rinsed for 1 sec in distilled water at 4uC. After

drying at room temperature, slides were exposed in contact with

Biomax film (Kodak) for 3 days to assess autoradiographically the

radioactivity bound to regions of interest.

Fluoro-Gold Injections
After i.m. premedication with 1 mg/kg diazepam (Valium,

Roche), 0.05 mg/kg atropine sulfate (Aguettant) and 10 mg/kg

ketamine chlorhydrate (Virbac), animals were intubated and

anesthetized with isoflurane (1%). Animals were immobilized in

a stereotaxic frame. A laminectomy was performed at cervical

vertebra level (C2 to C5) and the dura was carefully opened to

expose the spinal cord. The fluorescent retrograde tracer

FluoroGold (FG; Sigma-Aldrich) was unilaterally injected (right

side; 1 ml/10 min at 4% in 0.9% saline solution; 2 ml/injection)

into the dorsal column through a 29 Gauge needle at five locations

every 3 mm between C5 and C2 cervical levels at 2–3 mm depth.

Then, the dura, the muscles overlying the vertebra and the skin

were sutured. Animals were sacrificed 30 days after surgery to

allow retrograde FG migration.

Immunohistochemistry
Single labeling. Tyrosine hydroxylase (TH), DAT, dopamine

b-hydroxylase (DBH) and aromatic amino acid decarboxylase

(AADC) immunoreactivity (IR) was performed within the

diencephalon and mesencephalon as previously described in detail

[32,33]. Briefly, free-floating sections were incubated for three

nights at room temperature in serum containing TH antibody

(1:10000; Chemicon MAB318, Temecula, CA, USA) or for one

night at room temperature in serum containing DAT (1:1000;

Chemicon MAB369), DBH (1:2000; Chemicon AB1585) or AADC

(1:500; Chemicon AB1569) antibodies diluted in phosphate

buffered saline (PBS) with Triton X-100 and 1.5% bovine serum

albumin. Sections were then incubated with appropriate

biotinylated secondary antibodies (1:200, GE Healthcare, UK) for

2 hours. Tissue sections were further processed using Vectastain

ABC kit (Vector Laboratories, Burlingame, CA, USA) and 3,3-

diaminobenzidine tetrahydrochloride (DAB) and nickel for TH,

DAT and DBH detection or with the Novared substrate kit for

peroxidase (Vector Laboratories) for AADC detection. The sections

were mounted on gelatin-coated slides, dried, counterstained with

neutral red, dehydrated in graduated concentrations of ethanol,

cleared in xylene and mounted in Eukitt.

The Diencephalospinal Pathway
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Double labeling. Double fluorescent labeling was performed

to determine the distribution of TH- and AADC-positive neurons,

TH- and Calbindin-D28k-(CALB, using anti-CALB antibody,

1:1000, Sigma Aldrich) positive neurons and TH- and FG-

positive neurons. FG labeling was enhanced using a FG antibody

(1: 5000; Chemicon MAB153) [34]. Following 1 hour of incubation

with blocking solution (PBS with 3% normal goat serum, 0.3%

bovine albumin serum and 0.05% saponin), the sections were

incubated overnight at room temperature with appropriate

combinations of two primary antibodies raised in different donor

species. Immunoreactions were then visualized by appropriate

secondary species-specific antibodies labeled with Alexa Fluor 488

and Alexa Fluor 568 (1:400, Invitrogen, Carlsbad, CA, USA) after

2 hours of incubation. Sections were incubated for 5 minutes with

the autofluorescence eliminator kit (Chemicon) and then

coverslipped with Vectashield mounting medium with DAPI

(Vector Laboratories).

For unbiased stereological cell counting of TH-, FG- and TH-

FG-immunopositive neurons, we opted for a combination of two

different colored chromogens for peroxidase. Briefly, free-floating

sections were first incubated with FG antibody for one night at room

temperature and then processed for IR revelation as described

above (using appropriate secondary antibody, GE Healthcare, UK),

except for the substrate kit for peroxidase. Indeed, we used an SG

substrate kit for peroxidase (Vector Laboratories) that stained the

FG-positive neurons blue-gray. After FG neuron revelation, sections

were first incubated with an avidin/biotin blocking kit (Vector

Laboratories) and then re-incubated with TH antibody (1:10000)

for one night at room temperature. TH-IR was revealed with the

NovaRed substrate kit for peroxidase (Vector Laboratories) that

stained the TH-positive neurons red. Thus, double-stained neurons

positive for TH and FG were labeled in a blue-red combination.

The sections were mounted on gelatin-coated slides, dried,

dehydrated in graduated concentrations of ethanol, cleared in

xylene and mounted in Eukitt.

Parkinsonism induction
MPTP is a well known dopaminergic specific neurotoxin used to

model PD in animals, notably in the NHP. As nothing is know

about a potential involvement of the A11 pathway in PD, we

sought to investigate the putative toxic effect of the neurotoxin

MPTP on A11 neurons. To this end, a total of 5 monkeys received

0.5 mg/kg (i.v.) of MPTP (Sigma-Aldrich) until the development

of parkinsonism following a sub-acute intoxication paradigm as

previously described [35].

Determination of spinal dopamine and its metabolite
concentrations

Dopamine and its metabolite concentrations after MPTP

intoxication were measured in lumbar spinal cord and dorsolateral

striatum of 3 MPTP-treated animals and 3 controls. The levels of

dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homo-

vanillic acid (HVA) were measured by a standard HPLC

technique with electrochemical detection, the detection limit of

DA being 0.1 fmol/ml. The samples were injected with an

autosampler (SIL-10AD Shimadzu, Japan) and separated by

HPLC on a reverse phase column (Luna 5 m C18(2) 15064.6 mm,

Phenomenex, UK) with a flow rate of 1 ml/min. The mobile

phase consisted of 75 mM sodium dihydrogen phosphate,

0.274 mM ethylenediaminetetraacetic acid (disodium salt),

1.4 mM 1-octanesulfonic acid (sodium salt), 10% acetonitrile

and the pH was adjusted to 3 with phosphoric acid. Dopamine

and its metabolites were quantified electrochemically by a dual-

carbon electrode high sensitivity analytical cell (Model 5011, ESA,

USA). The potential of the two electrodes was 100 mV and–

350 mV. Sensitivity was set at 100 nA/V with an electrochemical

detector (Coulochem II, ESA, USA). The chromatograms were

recorded with a chromatographic data system (Class vp5.0,

Shimadzu, Japan) and quantified by determination of peak areas

in relation to standard.

Stereological cell counts
Unbiased stereological cell counting of A9 (substantia nigra; SN),

A10 (ventral tegmental area; VTA) and A11 groups was performed in

normal (n = 4) and MPTP-intoxicated (n = 2) animals as previously

described [36]. Every fourth section of hypothalamus and mesen-

cephalon was processed for TH-IR. Stereological sampling was

performed using a computer-assisted image analysis system (Merca-

tor, ExploraNova, La Rochelle, France) coupled to a Leica DM-

6000B microscope. A11 was delineated rostro-caudally at 5x

objective using anatomical landmarks (in the posterior hypothalamus,

dorsal to the mammillary bodies, immediately lateral to the third

ventricle and medial to the mammilotegmental tract). A9 and A10

were delineated as previously described [32,36]. A random sampling

of 100 mm counting frame size and 100 mm grid size was applied.

Counting of A9, A10 and A11 neurons was performed at 40x

objective to ensure anatomical accuracy in the whole A9, A10 and

A11 areas. Guard zones of 1.5 mm ensured the exclusion of lost

profiles on the top and bottom of the section sampled. The number of

neurons in the A9, A10 and A11 groups was estimated using the

optical fractionator method [37], which is unaffected by changes in

the volume of reference of the structure sampled and is thus suitable

for estimating the number of neurons in brain nuclei that lack well

defined anatomical boundaries. The total number of TH-IR neurons

in the A9, A10 and A11 areas was calculated based on the following

formula: N = Q x (1/ssf) x (1/asf) x (t/h), where N is the estimate of

the total number of cells, Q is the number of objects counted, ssf is the

section sampling fraction, asf is the area sampling fraction, and t/h is

the actual section thickness divided by the height of the dissector.

Between 80 and 300 objects were counted to generate the

stereological estimates. All cell counts were performed by an

investigator blind to the animal experimental status. Following the

same stereological counting protocol, neurons stained for TH and

double-stained neurons for TH and FG were quantified within the

A11 area of the monkeys injected with the retrograde tracer FG.

Three categories of neurons were counted: TH-IR neurons labeled in

red, FG-IR neurons labeled in blue and double-stained neurons for

FG- and TH-labeled in a blue-red combination.

Statistical analysis
Unpaired t-tests followed by Welch’s correction using Graph-

Pad Prism 4 software were applied to compare mean DA and its

metabolites concentrations in controls and in MPTP animals and

to compare stereological counts in controls and in MPTP animals.

Data are shown as mean 6 standard deviation. Statistical

significance was considered at a probability (P) value #0.05.

Results

Topographic distribution of dopaminergic receptors
within the lumbar spinal cord

Radiolabeled antisense cRNA probes were used to determine

the topographic distribution of the DA receptor subtypes within

the lumbar cord. Figure 1 provides representative transverse

sections of lumbar spinal cord labeled with antisense probes for the

various DA receptors. To ensure the efficacy and specificity of

antisense radiolabeled cRNA probes, ISH was also performed in

forebrain frontal sections. As expected, D1 and D2 receptor

The Diencephalospinal Pathway
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subtypes were mainly expressed within the striatum and cortex,

D3 mainly expressed within the ventral striatum and the Islands of

Calleja and D5 mainly expressed within the cortex (Fig. 1) [38].

These results confirm the specificity of the cRNA probes for each

DA receptor subtype.

In the primate lumbar spinal cord, the labeling appeared

restricted to the interior gray matter and remained unchanged

whatever the lumbar spinal level (L2, L4 or L5). Overall, D2, D3

and D5 receptor subtypes were expressed in the lumbar spinal

cord sections. By contrast, the D1 receptor autoradiograms did not

show any positive signal in the NHP spinal cord (Fig. 1).

The macroscopical,analysis showed that the D2 receptor

distribution is mainly located within the dorsal horns of the spinal

cord. The DA D3 receptor signal showed a much wider

distribution within the gray matter of the spinal cord. The D5

receptors were predominantly distributed within the dorsal horns.

The D5 subtype signal appeared to be weaker than the D2 and D3

signals. Prior to the microscopic analysis of the distribution of DA

receptors, we first undertook detection of neurons and glial cells in

adjacent sections to provide a baseline appreciation of the

neuronal/glial distribution from which the ISH data could be

interpreted. In the spinal section provided in Figure 2A, the gray

matter has been outlined together with its classical subdivisions in

Rexed laminae (I-III; IV-VI, VII, VIII, IX, and X) [39]. The

microscopic analysis of spinal cord sections confirmed the

macroscopic regional distribution of DA receptors within the

cord. At the cellular level, the analysis confirmed the lack of D1

expression, as illustrated in Figure 2B. The detection of D2

labeling in spinal cord sections showed that D2 receptors were

intensely expressed in the dorsal horns mainly within the laminae I

to VI, as illustrated in Figure 2C. The detection of D3 labeling

showed that the cells expressing D3 receptors were more

homogeneously distributed within the gray matter, i.e. laminae I

to X, as illustrated in Figure 2D. Lastly, detection of D5 labeling

confirmed that the cells expressing this receptor were mainly

located in the dorsal laminae I to III of the lumbar spinal cord, as

also illustrated in Figure 2E. Several D5 positives cells were also

found in the spinal ventral horns.

TH immunohistochemistry within the hypothalamus:
comparison with TH-IR distribution in human

Figure 3 provides a representative example of TH-IR within the

anterior (Fig. 3A), medial (Fig. 3B) and posterior (Fig. 3C) aspect of

the NHP hypothalamus compared with the single available

description of hypothalamic TH-IR distribution in human [40].

TH-IR distribution in the anterior hypothalamus matches with

that described in human. TH-IR cells were indeed seen in the

dorsal and medial parts of the hypothalamus at the level of the

caudal portion of the ventromedial hypothalamic nucleus (VMH).

In the arcuate nucleus (ARH), TH-IR neurons (the human A12

group) were packed ventrally in continuity with a periventricular

group. This periventricular group, which was composed of

Figure 1. Macroscopic detection of dopamine receptors within the lumbar cord of non-human primate. Representative film
autoradiograms after radioactive in situ hybridization targeted against the mRNA DA receptors and transporter in lumbar spinal cord transverse
sections at different levels (L2, L4 and L5) and in frontal brain sections (positive control). Note that D2 and D3 subtypes are the most expressed DA
receptors: D2 receptors were more highly expressed in dorsal horn of the spinal cord whereas D3 receptors showed lower levels of expression with
much wider distribution within the gray matter of the spinal cord. Expression of the D1 subtype was not detected whereas the D5 subtype was
poorly expressed. Abbreviations: Hcd = Head of Caudate nucleus; Pu = Putamen; IClj = Islands of Calleja; Co = Cortex.
doi:10.1371/journal.pone.0013306.g001
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numerous small (15–20 mm) TH-IR cell bodies vertically arranged

along a narrow strip extending across the lower half of the third

ventricle, probably corresponds to the human A14 group. Finally,

the paraventricular hypothalamic nucleus (PVH), which com-

prised numerous large aggregated TH-IR neurons, likely corre-

sponds to the human A15 group (Fig. 3A).

Between the anterior and posterior hypothalamus, medium-

sized TH-IR cell bodies (25–35 mm) were distributed in the dorsal

hypothalamic area and probably correspond to the human A13

group (Fig. 3B).

In the posterior hypothalamus, TH-IR cell bodies were present

in the dorsal portion between the mammilotegmental fasciculus

and the third ventricle. They were more abundant at the level of

the mammilary nuclei. These medium-sized neurons were oval or

fusiform in shape and gave rise to two or three main processes that

were vertically oriented. These neurons are believed to be the A11

group described in human (Fig. 3C). Stereological counts showed

that the A11 neuron group is composed by 40026501 TH-IR

neurons per side.

Localization of diencephalospinal pathway origin by
retrograde tracing with FG

Histological analyses of FG injection sites within the cervical

cord by fluorescence microscopy, providing ultraviolet excitation

light to directly visualize FG (Fig. 4A) or by immunohistochemistry

directed towards FG (Fig. 4B), confirmed that FG was injected

unilaterally into the cervical dorsal column of the spinal cord.

Nevertheless, a spinal diffusion of FG towards the contralateral

side and/or the central aspect of the cord was observed.

In the diencephalon, the retrogradely-labeled neurons showed

typical cytoplasmic granular staining. As the main focus of our

work was the A11 area, we did not thoroughly explore the

noradrenergic and serotoninergic supra-spinal descending systems.

However, several FG-labeled cells were seen in the locus coeruleus

and in the dorsal raphe, thus confirming the diffuse uptake and

retrograde transport of FG. In the hypothalamus, FG-labeled cells

were located mostly in the posterior hypothalamus between the

third ventricle and the mammilotegmental fasciculus (Fig. 5A).

Double staining of TH and FG showed that the double-stained

neurons were located within the A11 group (Fig. 5B–H), while

very rare double-stained neurons were also found within the A13

group. The TH-labeled neurons did not differ morphologically

from the TH-FG-labeled neurons. The double-stained neurons

were located throughout the entire rostro-caudal extension of the

A11 area and were mainly located on the side of the FG injection,

although a sparse contralateral labeling was also observed.

Stereological counting of the FG-TH-labeled neurons identified

3120 neurons in the ipsilateral A11 group (72.2% of total TH-IR

neurons) and only 296 neurons (8.0% of total TH-IR neurons) in

the contralateral A11 group (Fig. 5B). Therefore, A11 neurons

mainly project ipsilaterally within the cord.

Figure 2. Microscopic detection of D2, D3 and D5 dopaminergic receptors in the lumbar cord. A. Reconstructed micrograph showing a
representative distribution of neurons and glial cells in a section from the lumbar spinal cord (L4). The distribution of neurons and glial cells is shown
with toluidine blue staining. Surrounding white and internal gray matter are delineated with a thick black line. Division of spinal cord into laminae is
approximate and separated with fine black lines according to the Rexed laminae description. Note that in laminae I-III, neuronal cell body diameters
are generally the smallest. In laminae IX, neuronal cells bodies are generally the biggest (probably corresponding to motoneurons). B. Illustrative
brightfield micrograph showing the detection of D1 labeling in the dorsal part of a lumbar spinal cord section. Note the lack of D1 positive cells.
C. Illustrative brightfield micrograph showing the detection of D2 labeling in the dorsal part of a lumbar spinal cord section. The arrows point to
typical positive cells for D2 labeling. D. Illustrative brightfield micrograph showing the detection of D3 labeling in the ventral part of a lumbar spinal
cord section. The arrows point to typical positive cells for D3 labeling. E. Illustrative brightfield micrograph showing the detection of D5 labeling in
the dorsal part of lumbar spinal cord section. The arrows point to typical positive cells for D5 labeling. Note that D2 labeling was mainly found in
laminae I to VI, that the D3 labeling showed a wider distribution in laminae I to X and that the D5 labeling was mainly found in laminae I to III.
doi:10.1371/journal.pone.0013306.g002
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Phenotypic characterization of posterior hypothalamic
TH-IR neurons

To further characterize the phenotype of the A11 TH-IR

neurons in the NHP, we first performed DBH-IR in the

posterior hypothalamus and in the locus coeruleus (positive

control). As expected, DBH-positive noradrenergic neurons

were found in the locus coeruleus (Fig. 6A) [41]. In the posterior

hypothalamus, no DBH-positive neurons were noted, thus

indicating the absence of noradrenergic neurons within this

region (Fig. 6B).

In addition, AADC-IR was performed within the posterior

hypothalamus. Interestingly, AADC-IR positive neurons (Fig. 7B)

did not display a similar distribution to that of the TH-IR cells in

the posterior hypothalamus (A11 area) (Fig. 7A). Indeed, AADC-

positive neurons were mainly found in a more ventral position

than the A11 TH-IR neurons, in a region corresponding to the

Figure 3. Characterization of tyrosine hydroxylase-positive neurons within the diencephalon in the non-human primate compared
to human. A. At the anterior hypothalamus level (AC-3 mm) where TH-IR regions A12, A14 and A15 are delineated. B. At the medial hypothalamus
(AC-4 mm) where region A13 is delineated. C. At the posterior hypothalamus level (AC-5 mm) where the TH-IR A11 region is delineated. Note the
remarkable concordance between NHP and human TH-IR distributions. Representative drawings of the human diencephalon are taken from
Kitahama et al., 1998 with the permission of Elsevier (License Nu2361961459060). Abbreviations: AC = Anterior Commissure; ARH = Arcuate
Hypothalamic Nucleus; cp = Cerebral Peduncle; DHA = Dorsal Hypothalamic Area; DMH = Dorsomedial Hypothalamic Nucleus; fx = fornix;
LHA = Lateral hypothalamic Area; Ltu = Lateral tuberal nucleus; nsp = nigrostriatal dopaminergic pathway; PaF = Parafornical nucleus; PEH = Periven-
tricular Hypothalamic nucleus; PHA = Posterior Hypothalamic Area; TM = Tuberomammillary nucleus; V3 = Third Ventricle; VMH = Ventral Medial
Hypothalamus; ZI = Zona Incerta.
doi:10.1371/journal.pone.0013306.g003

Figure 4. Histological analyses of FluoroGold injections into the lumbar spinal cord. A. Visualization of FG labeling by fluorescence
microscope providing ultraviolet excitation light. B. Visualization of FG labeling by immunohistochemistry directed against FG. Note that FG was
injected into the right dorsal horn of the cervical spinal cord and that there was a slight diffusion of the marker within the contralateral side.
Abbreviations: DGH = Dorsal Gray Horn; VGH = Ventral Gray Horn.
doi:10.1371/journal.pone.0013306.g004
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supramammilary nucleus. Very few AADC-positive neurons were

located in A11 group area, suggesting that the TH-IR A11

neurons were exclusively monoenzymatic. This was confirmed by

the fluorescent double labeling against TH and AADC showing

that AADC-positive neurons were not colocalized with TH-

positive neurons within the A11 group (Fig. 7F–K). In spinal cord,

we also found a few AADC-positive neurons strictly located in the

dorsal horn, within Rexed laminae I to VI (Fig. 7C–E).

Finally, we used a combination of DAT immunohistochemistry

(Fig. 8A–C), DAT binding (Fig. 8D–F) and DAT ISH (Fig. 8G–I)

on brain and spinal cord sections to determine whether TH-IR

A11 neurons express DAT. The three techniques showed that

neurons in the posterior hypothalamus do not express DAT. This

absence of DAT expression was confirmed in the lumbar spinal

cord where positive fibers (or neurons) were not detected by either

technique (Fig. 8C, F, I). The absence of DAT expression was not

due to a lack of specificity of the techniques used since SN neurons

serving as positive control were clearly positive for DAT-IR

(Fig. 8A), DAT binding (Fig. 8D) and DAT mRNA expression

(Fig. 8G).

Effects of the neurotoxin MPTP on A11 neurons and DA
concentration in spinal cord

As it has been shown that limb rigidity in patients with PD

points to sensorimotor processing damage resulting from a change

in their descending monoaminergic inhibitory control [42], we

sought to determine the effect of a pro-parkinsonian neurotoxin on

the diencephalospinal pathway despite the absence of DAT

expression.

Figure 5. Retrograde labeling of A11 neurons projecting to the spinal cord. A. Schematic representation of the hypothalamic A11 area in
which TH-IR neurons were reached by FluoroGold. The dots represent the localization of TH-IR A11 neurons. The red frame represents the area where
representative micrographs were taken. B. Representative micrograph showing a reconstructed overview of the TH immunopositive and FG
retrograde labeled cells in the A11 group. Immunoreactivity was revealed with Novared kit for TH neurons (Red) and with SG kit for FG neurons (Blue).
Double-stained neurons (TH-FG) were labeled in a blue-red combination (i.e. black). The black arrows point to typical double-stained cells. The round
heads arrows point to TH-stained neurons. Note that no single FG-stained neurons were found and that the majority of double-stained neurons are
located on the ipsilateral side of spinal injections (right) C–H: Representative double-fluorescent immunostaining of TH (green) and FG (red) obtained
under a confocal laser-scanning microscope in the A11 posterior hypothalamic group. The white arrows point to typical double-stained cells. Note
the colocalization between the TH-positive and FG-positive neurons within the A11 region. Abbreviations: cp = Cerebral Peduncle; FG = FluoroGold;
MM = Medial Mammillary nucleus; LHA = Lateral Hypothalamic Area; TH = Tyrosine Hydroxylase; TM = Tuberomammillary nucleus; V3 = Third Ventricle;
ZI = Zona Incerta.
doi:10.1371/journal.pone.0013306.g005

Figure 6. Dopamine beta-hydroxylase (DBH) expression in the
locus coeruleus (A) and the posterior hypothalamus (B). Note
the lack of DBH labeling in the posterior hypothalamus (A11 area).
Abbreviations: scp = superior cerebellar peduncle; V3 = Third Ventricle.
doi:10.1371/journal.pone.0013306.g006
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As expected from previous works [32,36], a significant loss of

TH-IR neurons was observed in the A9 (SN) and A10 (VTA)

dopaminergic groups following the systemic administration of

MPTP until the development of full parkinsonian symptom

(respectively, 91.463.62% of neuronal loss compared to control,

P,0.001 and 66.564.5% of neuronal loss compared to control,

P,0.001; unpaired t-test). Moreover, a significant cell loss within

the A11 group was found following MPTP intoxication (mean

number of neurons in control animals compared with MPTP-

treated animals, 40026501 vs. 20276110, P,0.001; unpaired t-

test) (Fig. 9A–C). Neuronal cell counts throughout the hypotha-

lamic antero-posterior axis showed that this neuronal loss was

uniform (Fig. 9D). We noted significant sensitivity differences

between the A9, A10 and A11 regions following MPTP

intoxication (neuronal loss in A9 compared with A11 group,

91.463.6% vs. 49.3964.8%, P,0.001 and neuronal loss in A10

compared with A11 group, 66.564.5% vs. 49.3964.8%,

P = 0.011; unpaired t-test). As calcium binding protein calbindin-

D28k (CALB) neuronal expression reduces the vulnerability to

MPTP-induced neurodegeneration [43,44], we performed a

double labeling against TH and CALB within the A11 and

VTA (positive control) regions. As expected, positive TH-CALB

neurons were found in VTA (Fig. 8E–G) [45]. However, the TH-

IR neurons of the A11 group did not express CALB (Fig. 8H–J).

As a significant cell loss was found in the A11 group following

MPTP intoxication, we determined the DA and metabolite

concentrations in the striatum and lumbar spinal cord (Fig. 10).

As expected from previous work [32,35], a significant decrease in

DA and DOPAC concentrations was observed in the striatum of

MPTP-treated animals compared to controls (respectively

P = 0.026 and P,0.0001; unpaired t-test). Moreover, the DA

turnover index, i.e. the ratio of DA metabolites (DOPAC + HVA)

divided by the concentration of DA, which reflects the relation

between DA metabolism and DA release, showed a significant

increase in the striatum compared to control animals (P = 0.032;

unpaired t-test). In spinal cord, HPLC dosages did not show any

significant changes in DA concentrations following MPTP

intoxication compared to control animals (P.0.05; unpaired t-

test). However, the levels of the DA metabolites HVA and

DOPAC were significantly lowered compared to those in control

animals (respectively P = 0.0038 and P = 0.048; unpaired t-test).

Consequently, the DA turnover index was significantly decreased

(P = 0.011; unpaired t-test), which is indicative of an ongoing

compensatory mechanism [46,47].

Figure 7. Aromatic aminoacid decarboxylase (AADC) expression in posterior hypothalamus and spinal cord. A–B: Immunohisto-
chemistry targeted against TH (A) and AADC (B) processed on adjacent sections of the posterior hypothalamus. Note the lack of AADC labeling in the
region of TH-IR A11 neurons. Stars label the same blood vessel profiles in adjacent sections (A and B). C–E: Immunohistochemistry targeted against
AADC within the dorsal horn aspect of the spinal cord. The black arrows point to typical AADC positive neurons. F–K: Double-fluorescent
immunostaining of TH (green) and AADC (red) obtained under a confocal laser-scanning microscope in a section through the VTA (F–H) and A11 (I–
K) groups. The white arrows point to typical double-stained cells in VTA. Note the absence of AADC-positive neurons within the A11 region.
Abbreviations: AADC = Aromatic Aminoacid Decarboxylase; DGH = Dorsal Gray Horn; MM = Mammillary nucleus; TH = Tyrosine Hydroxylase; V3 = Third
Ventricle.
doi:10.1371/journal.pone.0013306.g007
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Discussion

In this study, we characterize for the first time the neuroana-

tomical aspect of the diencephalospinal pathway in the NHP and

demonstrate the remarkable anatomical correspondence between

the distribution of human and NHP hypothalamic TH-IR

neurons. The A11 group is the unique TH-IR cell group

projecting to the spinal cord with some fundamental differences

compared to other dopaminergic systems, notably regarding the

absence of DAT and AADC co-expression. The site(s) of action of

the final end-product of these monoenzymatic TH-IR neurons, L-

DOPA, remains to be determined. The demonstration, however,

of AADC expressing neurons in the spinal cord supports the

hypothesis of a local dopaminergic synthesis. As D1 is not

expressed in the NHP spinal cord, dopamine could modulate the

sensorimotor processes mainly through the D2 and D3 receptors.

Topographic distribution of dopaminergic receptors
within the lumbar spinal cord

The lack of D1 expression is a very relevant finding since it

highlights inter-species differences notably with rodents in which

D1 receptors are highly expressed in the spinal ventral horn

[48,49,50]. Indeed, in rodents, evidence of a D1-mediated

dopaminergic effect on locomotor spinal networks activation was

shown. Dopamine or D1/D5 agonists administration was found to

acutely elicit fictive locomotor activity in neonatal mice [51,52]

and rhythmic locomotor-like movements, both in wild type and in

D5-KO spinal cord-transected mice [53,54]. Also, in reduced

models using isolated rat newborn spinal cord, high DA or D1

agonist concentration was shown to activate the central pattern

generators [9,55]. On the other hand, activation of spinal D1

receptor subtype was also implicated in pain modulation by

increasing the long term potentiation of C-fibers or by stimulating

the substance P and calcitonin release in rat spinal dorsal horn

[56,57]. In our study, the absence of the major activating

dopaminergic receptors subtype D1 therefore question the so far

considered predominant role of D1 receptor in locomotion and

pain control. Further physiological studies in NHP spinal cord are

needed to definitively address this issue.

Both the lack of D1 receptors in the NHP spinal cord and the

striking correspondence between the anatomy of the NHP and

human central nervous system underscore the need to extend

Figure 8. Absence of dopamine transporter expression in the diencephalospinal pathway. A–C: Immunohistochemistry targeted against the
DAT. A. Representative micrograph of DAT labeling positive neurons in the ventral tegmental area. The arrows point to typical immunopositive neurons.
B. Representative micrograph showing the absence of DAT labeling at the posterior hypothalamus level. C. Representative micrograph showing the
absence of DAT labeling in a lumbar spinal section. D–F: Representative DAT binding autoradiographs in the substantia nigra (D), posterior hypothalamus
(E) and lumbar spinal cord (F). Note the absence of DAT expression in the posterior hypothalamus and spinal cord, in contrast with the intense expression
in the substantia nigra and striatum (positive controls). The arrow points to the approximate location of A11 area. G–I: Film autoradiograms after
radioactive in situ hybridization targeting the DAT mRNAs in the substantia nigra (G), posterior hypothalamus (H) and lumbar spinal cord (I). Note the
absence of DAT mRNA expression in the posterior hypothalamus and spinal cord, in contrast with the intense expression in the substantia nigra (positive
control). The arrow points to the approximate location of A11 area. Abbreviations: Hcd = Head of Caudate nucleus; Mfb = Medial forebrain bundle;
MM = Medial Mammillary nucleus; mtg = Mammilotegmental fasciculus; Pu = Putamen; SN = Substantia Nigra; V3 = Third Ventricle.
doi:10.1371/journal.pone.0013306.g008
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findings in rodents to larger animals before inferring results

obtained in lower species to humans. By contrast, we show that the

D2 and D3 receptor subtypes are expressed in the lumbar spinal

cord as in the rat where the D2 [58,59] and D3 [60] receptor

subtypes are highly expressed. Activating these two receptors leads

to the inhibition of cAMP formation [61] and to a likely decrease

in the neuronal activity of the expressing neurons [38]. In spinal

cord, an inhibitory role of DA has also been suggested [62,63]. As

Figure 9. Effect of the neurotoxin MPTP on hypothalamic A11 neurons. A. Representative microphotograph of TH-IR A11 neurons in a
control animal. B. Representative microphotograph of TH-IR A11 neurons in an MPTP-intoxicated animal with full parkinsonism. Note the large cell
loss within the A11 area. C. Mean (6SD) percentage of total number of TH-IR neurons remaining following MPTP intoxication within the substantia
nigra, ventral tegmental area and A11 group (*P,0.0005, comparison between MPTP-treated animals (n = 2) and control animals (n = 4); #P,0.02 and
###P,0.0003, comparison between dopaminergic groups following MPTP intoxication, two-tailed P value, unpaired t-test). Note the difference in
cell loss following MPTP intoxication between the A11 group and the various DA regions. D. TH-IR counted cells were mapped in individual sections
from anterior to posterior hypothalamic A11 area with 200 mm section intervals. Note the general cell loss at different levels of the A11 area in MPTP-
treated animals (n = 2) compared to controls (n = 4). E–J: Representative micrograph of TH (green) and CALB (red) double fluorescent
immunostaining obtained under a confocal laser-scanning microscope in VTA (E–G) and A11 (H–J) sections. The white arrows point to typical
double-stained neurons. Note the absence of CALB-positive neurons within the A11 region. Abbreviations: Calb = Calbindin 28 k; TH = Tyrosine
Hydroxylase; V3 = Third Ventricle.
doi:10.1371/journal.pone.0013306.g009
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D2 receptors are more highly expressed in the dorsal horn, their

stimulation might contribute to modulating the somesthetic

processes and spinal reflexes [13]. The much wider distribution

of D3 receptors suggests an extended role for these receptors in

modulating sensorimotor integration. Identifying the phenotype of

spinal cells expressing the various DA receptors is critical for better

understanding of the DA modulation of the spinal cord functions.

Anatomical organization of the diencephalospinal
pathway

The rat diencephalospinal system was considered dopaminergic

because of TH neuronal expression [5,6,64]. We now provide

evidence in NHP that it originates almost exclusively from a

caudal hypothalamic TH-IR cell group referred to as A11 [65].

Most of the A11-FG-labeled neurons were located ipsilaterally but

a small proportion of the FG-labeled neurons was also found

contralaterally. Our obervation is in line with Skagerberg et al.

who demonstrated that A11 projections are predominantly

ipsilateral in the rat [6]. Despite our efforts to confine FG

injections to only one side of the cord, an unavoidable diffusion of

FG was noticed on the contralateral side that directly could

account for the 8% of TH-IR neurons labeled retrogradely on the

contralateral A11 region. Decussation at the spinal or supra-spinal

level cannot be ruled out but would be modest, if any. Indeed, if

there were a few contralateral axonal projections, the FG labeling

could well be below detection threshold of our method.

Despite the assumed exclusive supra-spinal origin of spinal DA

[39,66], interspecies similarities and differences should be

highlighted regarding the location of the TH-IR cell groups

projecting to the cord. In our study, the retrograde tracer reached

almost exclusively the TH-IR neurons of the A11 group, in

keeping with rat data [6,67]. This contrasts however with the

results obtained in rabbit and mouse in which only the A13 group

in the former [68] and all three A10, A11 and A13 groups in the

Figure 10. HPLC detection of striatal and spinal dopamine and its metabolite levels in control and MPTP-treated monkeys. Mean (%
of control 6 SD) regional DA, HVA and DOPAC levels were obtained from 3 controls and 3 MPTP-treated animals. Note the significant drop in DA and
DOPAC levels in the striatum following MPTP intoxication. In the lumbar spinal cord, note the absence of DA level modification, the significant
decrease in metabolite levels and the DA turnover index (ratio (HVA+DOPAC)/DA) in MPTP-treated animals compared to controls (*P,0.05;
**P,0.001; ***P,0.0001, two-tailed P value, unpaired t-test). Abbreviations: DA = Dopamine, DOPAC = 3,4-Dihydroxyphenylacetic acid,
HVA = Homovanillic acid.
doi:10.1371/journal.pone.0013306.g010
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latter [69] were shown to project to the spinal cord. Importantly,

our results fit with the single anatomical human description of A11

and beyond, with the entire human hypothalamic TH-IR regions

[40]. This remarkable anatomical correspondence between the

NHP and human further supports the relevance of NHP for

studying the physiology of the hypothalamic DA circuitry and the

downstream functional consequences of its dysfunction. In the

same way, at the spinal cord level, the predominant localization of

D2 receptors in the dorsal horn confirms earlier investigations in

the rat [67] and perfectly matches the high dopaminergic fiber

density in the dorsal horn of both rodents and NHP spinal cord

[39].

Particular phenotype of the A11 neurons: towards an L-
DOPA diencephalospinal system?

The phenotypic characterization of A11 neurons showed that,

although they are TH-immunopositive, they do not express DBH

or AADC. This particular phenotype therefore questions the

validity of the so far unquestioned dopaminergic nomenclature of

this area. Monoenzymatic TH-positive neurons have been mainly

described in the rat and the NHP arcuate nucleus [70,71,72,73,74]

and, one other study using antibodies against L-DOPA and

dopamine in the rat posterior hypothalamus also described a

majority of L-DOPA-containing neurons within the A11 region

[75]. Here we show for the first time the monoenzymatic TH

nature of the neurons in the NHP A11 group. Thus, L-DOPA

synthesis in these neurons as a final releasable product raises

questions about their functional significance. Although it has been

suggested that L-DOPA plays a role in locomotion processes in

cats and rodents [76,77], it remains unclear whether this medullar

action is due to L-DOPA per se or to its conversion to DA or

noradrenaline. As we also demonstrate the presence of mono-

enzymatic AADC neurons in the NHP spinal cord and because

DA could be synthesized by non-dopaminergic neurons [78,79],

we speculate that part of the spinally released L-DOPA may be

locally converted into dopamine. Otherwise, the contiguity

between the TH-IR and AADC-IR neurons in the posterior

hypothalamus might imply a cooperative synthesis of DA, as

already suggested in the rat arcuate nucleus [80]. However, it

cannot be ruled out that these neurons express AADC but at levels

too low to be detected by immunohistochemistry, especially since

the levels of AADC expression seemed variable [81] and may vary

according to the circadian rhythm. In the same way, dopamine

immunopositives fibers were found in NHP spinal cord [39] with a

distribution consistent with the A11 labeling previously observed

in rats [67]. Regarding our finding of a L-DOPAergic nature of

A11 neurons, this discrepancy requires further investigations, but

one may argue in favor of a possible AADC/TH colabeling in

spinal cord descending collaterals.

Finally, A11 neurons do not express DAT. This is consistent

with previous reports in rats and human in which a lack of DAT

was found in the hypothalamus [82,83]. The absence of DAT

provides additional evidence against the so far presumed DA

nature of A11 neurons.

Consequences of MPTP administration on A11
diencephalospinal pathway

The active metabolite of MPTP, i.e. MPP+, requires the DAT

to be uptaken into dopaminergic neurons to exert its toxicity

[84,85]. Here, despite the lack of DAT expression in A11 neurons,

we found a significant cell death in this area following MPTP

intoxication. However, the MPTP toxic effect is not limited to the

DA regions and affects other monoaminergic [86] or non-

monoaminergic regions [87,88] that do not express DAT either.

As our intoxication paradigm used high MPTP doses and given

that MPTP is highly lipophilic [89], a passive uptake of MPTP in

A11 neurons combined with an absence of the neuroprotective

protein calbindin 28 k may explain the partial cell loss. Our data

are in line with previous findings showing that different TH-IR cell

groups are not uniformly affected by MPTP [32,36]. Indeed, the

50% MPTP-induced cell loss in A11 is lower than the 90% and

70% loss reported in the A9-10 and A8 groups respectively, which

both express DAT.

The A11 cell loss in MPTP-treated monkeys did not induce

significant changes in spinal DA concentration. However, spinal

DA metabolite concentrations were significantly reduced. As

MPTP induced a partial lesion of A11 neurons, a compensatory

downregulation of DA spinal catabolism may be sufficient to

maintain a normal basal spinal DA tone [47]. Nevertheless, fine

measurements of spinal DA concentration following MPTP

intoxication by voltametry could be useful for assessing the

potential impairment of DA transmission, notably when the

diencephalospinal system is activated.

Potential relevant pathophysiological implications
Spinal cord excitability impairment may manifest as RLS

sensorimotor symptoms, a disorder characterized by an urge to

move the limbs and unpleasant sensations in the legs occurring at rest

and particularly in the evening [90]. These symptoms are partially

and temporarily relieved by movement and are particularly

responsive to dopaminergic agents, thus supporting the hypothesis

of an involvement of the diencephalospinal pathway [10,21].

Clinical and electrophysiological studies in patients with RLS have

indeed provided evidence of a sensorimotor processing impairment,

suggesting an enhanced spinal cord excitability and/or supraspinal

pain modulation that is reversed by dopaminergic treatment [91,92].

In hyperactive D3-receptor knock out mice [93], it was also shown

that D3 spinal receptors are involved in limiting the spinal cord

excitability [12] thus bringing more fundamental evidence consistent

with an involvement of spinal dopamine dysfunction in the etiology

of RLS. As DA spinal release increases with locomotion [18,19], the

relief of RLS symptoms by movements could be partly explained by

a comparable mechanism. Similarly, the implication of A11 in

chronic pain conditions such as migraine has also been demonstrated

[11]. Migraine is more prevalent in patients with RLS [94,95,96],

suggesting, at least in part, a common pathophysiological mecha-

nism involving the diencephalospinal pathway.

In animals, lesioning of the A11 group has been attempted in

rodents in order to model RLS [49,97] and to investigate the

dopaminergic influences in migraine [11]. In the first set of studies,

however, the clinical phenotype resulting from such damage could

hardly be considered as RLS symptoms. Large animals might offer a

wider clinical directory and our work constitutes the first step toward

the development of models targeting the A11 group in the NHP.

In conclusion, a growing body of evidence supports the

hypothesis of a hypothalamic involvement in the physiology of

the RLS and that of the A11 area in the control of nociception

processes [11,98]. By reinstating a clearer anatomical description

of the diencephalospinal pathway in the NHP, we believe that our

results will contribute to better understanding of the physiology of

this tract and the ensuing consequences of its dysfunction.
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